ELECTROCONVECTION OF LIQUID DIELECTRICS

V. V. Nikitin UDC 536.24

Ponderomotive forces, which are responsible for electroconvection, were investigated in
relation to the properties of the liquid and the strength of the electric field of an infinite
charged plate. The obtained solutions were used to obtain a parameter of the relative in-
tensification of heat transfer in various dielectrics in an external electrostatic field.

1t is a known fact that an electric field intensifies heat transfer to liquids and gases. The necessary
conditions for the occurrence of electroconvection are gradients of the field strength and polarization co~
efficient of the medium close to the heat-transmitting surface, but it has been discovered experimentally
[1] that a uniform electrostatic field also affects the free convection of a dielectric [1]. In the given case
edge effects can be neglected and the field can be regarded as uniform everywhere, except for the region
near the capacitor plates. Here the field is reduced owing to polarization of the medium resulting from
orientation of molecules with permanent and (or) induced dipole moments, and also to separation of charges
in the electric field of the surface. The liquid dielectrics used have a low, but nonzero, conductivity (o=
107410~ ©-!- m~-') and in this sense can be regarded as very weak electrolyte solutions, The pronounced
effect of insignificant traces of impurities in the dielectrics on heat transfer, as observed by Senftleben [2],
confirms this view. The characteristic length of the space-charge region on the surface lies in the range
1/n=10"8-10"% m, which is usually much smaller than the region of variation of the electrostatic potential.
It is in the shielding region, however, that the ponderomotive forces responsible for the additional con-
vective flow of liquid are located.

The electrostatic field strength in a semiinfinite liquid with a prescribed potential on the plane boundary
and a boundary charge screened by ions of opposite sign is calculated below as a model. The solutions ob-
tained give the distribution of electrostrictive forces in the nonuniform temperature field of the liquid and
their behavior in relation to the thermal change in gravitational forces and the similarity criteria, which
characterizes the intensification of heat transfer in an electrostatic field. Since only the mechanism of po-
larization of the medium is considered, the results obtained can be extended to the case of a cylinder with
radius greater than the shielding length and a heated liquid in an external electric field.

1. Let a plane charged surface y =0 form the boundary of a semiinfinite volume of a weak solution of
binary electrolyte. We regard the mean concentration n« of ions of each sign in unit volume as so small
that the Debye shielding length 1/% greatly exceeds the length of averaging of the electric field,

We find the dimensionless values of the total ion concentration, the space-charge density, and the
strength and potential of the electrostatic field

:n++n_ n,—mn __¢eB e®
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as functions of the dimensionless coordinate along a normal to the surface
=%y, % = (8ne’ng /ekT)" (1.2)
Here E, ¢ are dimensional values of the field strength and potential, n,. and n_ are the concentrations

of positive and negative ions, e is the absolute ion charge, kT is the temperature (in energy units), and £4
is the dielectric constant.
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For simplicity we will assume the electrolyte symmetric (the moduli of the charge numbers |z} =
| z_| =1) and the diffusion coefficients Dj=D=const, which is approximately true for the commonest dis-
sociating impurities at low concentration. Considering liquids and gas which either have high dielectric
strength, or are indifferent to the charged surface, we neglect the current due to surface charge leakage

Ji = eD (zem,E [ kt — yn) =0
This condition in conjunction with the Maxwell equations leads to the following system of equations:
gy =ne, np=gqe, & =¢, Q= —¢ 1.3)
Whence, eliminating q and n, we obtain an equation for the field in the liquid
€ Eopp — EgEpp — &89 = O (1.4)

The subscripts here denote the variable and order of the derivatives. If the medium is electrically
neutral far from the surface

g, €0, n-—slwhen 9§

and for a prescribed electrostatic potential on the surface (regarded as positively charged for definite-
ness) relative to infinity

9(0) =gy >0, ¢(0) =0
we obtain

@ = 21ncth B+Te° , (e., = lncth %’) {(1.5)

2
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This solution can be obtained not only from the condition for zero ambipolar-diffusion ion flux, but
also by the self-consistent field method. In fact, if, in accordance with the Debye-Hiickel theory [3], we
take the statistical ion distribution in the electrostatic field as

N, =nNeeXp(— ), N.=n.expe (1.8)
then the Poisson equation takes the form
Ppp =5hP, (o) =@y (c0) =0 (1.7)
and gives the same relationship between field strength and potential as is given by equation (1.5)
& = 2 sh ¢/2 (1.8)

In the immediate vicinity of the plate, however, these solutions have no physical sense in the case of
a high degree of ionization of the liquid or in the case of a strongly charged surface. In the region of applic-
ability of the obtained solutions the following two criteria must be satisfied.

Firstly, the mean distance between counterions must be not less than the distance specified by the
condition for weakness of the Coulomb interaction of negative ions in comparison with their mean kinetic
energy

'l > 8 =e*[ekT
Secondly, the mean distance between positive ions must not be greater than the distance to the surface
n;‘/a< y

Using solutions (1.5), (1.6) we write the two criteria in the form

0+ 6o _ud MV’
th 28 > max {VsT’( ) } (1.9)

We first investigate the first part of the inequality. It is valid in the region

V8 + ub q:o)
S~ —————— —_—
e/ln(vg_%ch 1

and, in particular, wherever 6 =0, if the surface potential does not exceed the critical value

[@o] = In (8 / x8) (1.10)
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We write this expression in another form, using the kinetic-theory relationship between the electrical
conductivity o and the ion mobility w [4]

0 = 2neew, w=eD [ ekl
Then
w = (4at0 | DYi, [g] = In (2D / 067 (1.11)

and the values of the shielding lengths and critical potential can easily be estimated from tabulated parame-
ters (the Schmidt number S=v/D for most low-viscosity liquids with impurity conductivity is of the order
of 103, and for gases is close to unity). For instance, for dry air, regarded as a weakly ionized gas, the
critical surface potential [¢,] = 30, whereas for chemically pure, distilled, and sea (salinity 0.035) water
[¢]~20, 10, and 1, respectively. The last, however, cannot be regarded as a weak electrolyte solution,
since in this case the Debye length and the diameter of the water molecule are commensurable,

Cases where ¢(>>4 are of practical interest, since the dimensionless electrostatie potential is re-
ferred to kT/e=0.03 V (T =300°K), and the obtained values of [¢,] are less than the technical criteria for
strong surface charge. Investigating inequality (1.9) further, we find that in the region 6 <1 of surface
charge shielding the last part of the inequality is decisive for ligquids with mean ion concentrationn,, < 673,
i.e., for practically all liquid dielectrics. Hence, the region of applicability of the solutions of (1.5) and
(1.8) is uniquely defined and its dimensionless limit 8 is a weak function of the degree of ionization of the
medium

0330, = 2 (ud)* ~ 0.4 (1.12)
and the potential ¢ x at the limit is much less than the surface potential
P = 2Incth (wxd) << @

We write the field potential in the immediate vicinity of the surface in the form of three terms of a
McLaurin series

(P=q>o+(Pa(O) 8 +‘/2cp,,(0)62 when 0<L1

and, combining the solutions for the potentialand its derivative at the limit 6 x, we determine the field
strength and space~charge density

B Shze*) (1.13)

2 5] 26
To= — Bup (0) = ooz (w0 — 2In oth % — 2%

2 9
gg=— @, (0) = 5. (cpo —2In cthi*

We note that the last terms containing hyperbolic functions can be neglected, since with the restric-
tions adopted earlier,

£g > Qo (x) ™" > (2m) % g > 1

and we can regard the potential distribution in the shielding region as parabolic,
¢ =g (1 —0/64)° (1.14)

This generally adopted operation of "sewing together" the solutions is less accurate than the method
of asymptotic combination [5], but requires less information about the physicochemical effects on the charged
surface., The indicated method, however, can be used in a particular case for determination of the mean
strength (&) of the field within the limits of the surface charge shielding length. The internal solution for
the potential can be written in dimensional form ¢=®&;~yE (8 < 1) which does not contain either 6 or 1/% as
a characteristic length, and the external solution is a one-term expansion ¢ = ¢ of Eq. (1.14) in the region
§ =1, Combining their limits when 6 —1 and -0, respectively, we obtain ( €) = ¢,, which follows, in par-
ticular, also from Eq. (1.13).

2. When the medium is in mechanical and thermal equilibrium the molecules are acted on not only
by gravitational forces fg= pg, but also by ponderomotive forces directed towards the charged surface, ir-
respective of the sign of the charge and with space density

—1 N 2
= avE, =ttty ) (2.1)
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Here w and 8 are the polarization coefficients of the medium and an individual molecule, p and M
are the density and molecular weight, p, is the constant component of the dipole moment of the molecules,
and N is the Avogadro number, Outside the shielding region the ponderomotive forces are small

fe = %% E®cth (§ + 8o}, 6 >0,

Hence, we can regard them with reasonable accuracy as localized in the layer 6 = 6, with mean
density

Jed = 1/2'K%1E0’ 2.2)
When the thermal equilibrium of the medium is distributed, the increment of these forces is
A _ r 1 2
Afe = — [ aT ]T=T.AT = o [+ Z"T'o(1 + 1+3BkTopo'2)]AT 2.3)

In differentiating expression (2.2) we take account not only of the variation of the Debye length 1/
and the polarization coefficient ; with the liquid temperature T, but also the thermal expansion

p=po(1 —uAT), a= p.,[ar],,' AT =Ty —T << T,

Here py and T are the parameters of the liquid on the body surface (at y=0).

The field strength on the surface is constant owing to the absence of temperature fluctuations on the
wall and is

n (Snme)z]‘/t
BdkT

E,= CDO[ (2.4)
In the usual method of experimental investigation of electroconvection the heated body is in an ex-
ternal electric field and, hence, the field strength E; can be calculated in the usual way if the characteristic
length of the body is much greater than the shielding length.

The thermal increment of the ponderomotive forces (2.3) is independent of the charge polarity and,
as distinct from the change in gravitational forces Afg=p0g01AT, is always directed against the temperature
gradient in the medium and creates an additional convective flow. The degree of intensification of heat
transfer in an electrostatic field is characterized by the ratio of these forces

At w(eg—1) 1 2
V= AT;‘ =vEg¢, v= 3pg [1 + 5o, (1 + 1 +3ng.,po-2)] (2.5
The expression in the square brackets is 1 +1/aT, on the average, since for dipoleless molecules it
is 1+1/20T, and for molecules with preferred orientational polarization it is 1+3/2¢T,. Using Eq. (1.11)
we can write the parameter v, which unifies the properties of the liquid, in a form convenient for approxi-
mate calculations

~t—1 _1_) E‘E)V’
ve=s 4pg (1 + ol (nv : (2.6)
Hence, we obtain the following results, The intensification of heat transfer in an electric field in-
creases with increase in the polarity of the molecules and dielectric constant and with reduction of the
viscosity, molecular weight, and compressibility of the medium, other conditions being equal.

Heating of nonpolar ligquids leads to an increase in the parameter v due to reduction of the viscosity
and electric resistance, whereas polar liquids show an opposite tendency due to disturbance of orientational
order. Finally, the effect of electroconvection is more pronounced in liquids than in gases, in view of the
considerable difference in the values of the Schmidt number and bulk expansion coefficient.

Multiplying the ratio of the thermal increment of the ponderomotive forces to the Stokes resistance
to motion of the liquid mole by the Reynolds and Prandtl numbers we obtain the electroconvection analogs
of the Grashofand Rayleigh numbers

G,=GV, R,=RV

The usual power relationship between the Nusselt number and the Rayleigh number in free-convection

theory
Nu = const R" (n =042 —0.33)
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can be extended to the case of electroconvection. We assume the additivity of the convective fluxes due to
volume forces of gravitational and electroconstrictive origin. We obtain the equation for heat transfer in
an electrostatic field

Nu, = const (R + R,)" = Nu(1 + V)" 2.7

The relationship between the relative increase in the heat transfer coefficient and the strength of the
electrostatic field as the latter increases varies from quadratic

Nu,/Nu—1 —nvEy? when Ey,—>0
to a weaker relationship
Nu,/Nu—1— (vE>2)" when Ey—
which illustrates the saturation of electroconvection observed by Senftleben. Equation (2.7} can be used to
estimate the "threshold" value of t111 electrostatic field at which intensification of heat transfer becomes
appreciable. In fact, where E,=v~ /% and in the indicated range of values of n we can expect an increase

in the heat transfer coefficient in an electrostatic field by 10-25%, which is close to the error of the cor-
responding experiments.
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